
 
An experimentalist’s attempt to 
understand why  g=2 for an electron – 
or where does the electron’s spin come 
from?   

“A great deal more was hidden in the Dirac equation than the author had 
expected when he wrote it down in 1928. Dirac himself remarked in one of 
his talks that his equation was more intelligent than its author. It should 
be added, however, that it was Dirac who found most of the additional 
insights.” Weisskopf on Dirac 

The Dirac equation 
At the start of the quantum world, it was not obvious how quantum mechanics con be reconciled 

with special relativity. 

Initial ideas were based upon quantising the relativistic energy equation. (E,p) being an invariant 

four-vector 
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giving what is now known as the Klein-Gordon Equation  
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The problem is that the Hamiltonian formed by (1.2) is  
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which is not linear in special relativity co-ordinates. 

Dirac (1928) postulated an equation which is a sort of square root of (1.1) – as much from a sense of 

beauty than anything else – i.e. that 

 . . 0op p m         (1.3) 

Remembering that E H   , the Hamiltonian is . .p m   where α and β are 4 by 4 Hermitian 

matrices. (Note that we have moved to putting 1h c  ). The equation is linear in both 

momentum and energy, so position and time are on the same footing, the requirement of special 

relativity.  

 

Dirac’s equation1 can be expressed in a compact form as  
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[Multiply (1.3) through by  , remembering that 2 I   or 1]. 

As a check on the form of the Dirac equation, we act on (1.4) with (i )u

u m   to give

2( ) 0u v

u v m       . Dirac’s noticed that, as derivatives commute, this is the same as 
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u v m      and that  , 2u v uv   ( uv being the "Minkowski tensor" – which sets 

out the metric of flat  spacetime) his equation can be converted back to the Klein-Gordon equation, 

viz 2 2( ) 0m    . This requires that 0( ) 1,( ) 1j     and that u v v u     . This anti-

commutation requirement remove the possibility the gamma could be ordinary numbers. 

                                                           
1 Feynman compacted Dirac’s equation further by adding a bar to the partial derivative sign, , to 

denote multiplication by i  . Thus the equation became just ( ) 0u m     



The Dirac equation for an electron in a magnetic field 
We start with the basic Dirac equation  

(i ) 0u

u m      

and add an electromagnetic field requires us to move to a covariant derivative thus 

u u u uD ieA      

giving (i ) 0u
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Acting on this with ( )u

ui D m   we have, given that the cross terms cancel,  
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but noting that the gamma matrices’ commutators sum as follows 
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( uv is the Minkowski metric with signature (+,-,-,-)) 
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So we are left with, for the Dirac equation in an electromagnetic field, 
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 First turning our attention to the  ,u vD D term: Expanding, we have
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But we have missed something: The operators are actually acting on the wavefunction , so the 

u vA and v uA terms need to be expanded to ( )u v v uA A   and ( )v u u vA A   respectively, where 

the ()  indicates that p  only acts on qA .  This gives 
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Noting that derivatives commute, we are left with 
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tensor. So we now have 
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The orbital angular momentum term 

Now looking at the first term u

uD D and putting the system in a weak 0B field2 in the third (say z) axis 

[see note[1] below on this approximation.  Then 2 1
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Noting that 
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u i i i i i i iD D D ie A A A         

As the magnetic field is weak, we can ignore the 2( )iA term and again we must think of all of these 

operators as acting on .  Thus ( )i i i i i i i i i i i iA A A A A A             where again the ()  

indicates that i  only acts on iA . But in this case 0i iA   (by substitution into our weak field 

above) so ( ) 2i i i i i iA A A     . So 2 2 2( ) ( ) 2i 0( )i i i i iD eA A      or 
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giving us 2 2 2( ) ( ) 2 . 0( )i i o iD ieB x p A     . We recall, of course, that x p L  so

2 2 2( ) ( ) . 0( )i i o iD ieB L A    .  

Here we see the classical orbital angular momentum term interacting with the B-field. 

                                                           
2 Checking the 12F component of the electromagnetic tensor, we have 
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The Classical Hamiltonian term 
Recalling that the four component wavefunction can be dissolved into two components, so that
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and noting that   in the non-relativistic limit (i.e. a slow electron): Why? Consider 

moving into a frame where the electron is stationary. Then we have 0( ) 0m m     after setting

( ,0)up m . But 
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And compacting we have 
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so 0  and  can exist.  

Writing  imte    we look at the 2 2
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And applying this again  
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Dropping terms in 
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as being small and adding back the spatial derivatives we have for our 
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The electron Spin term 
Returning to the full equation, we look at the middle term 
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and remembering that the system is in a weak 0B field in the third axis and that 

2 1

0 1 0 2 0 3

1 1
0, , , 0

2 2
A A B x A B x A       we compute

0

2 0

k

ijk

ijk

e
F






 
 
   

Trying component 123 and 213 we have (watching the factors of two) 3
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 or – restoring the h ’s 
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[1]Errors from ignoring the Vector potential squared term 
 

 

It is worth checking what approximation is involved in ignoring the term in 2( )O eA . The move to the 

use of the covariant derivative u u u uD ieA     ignores the presence of an h  term as up h 

and ueA both have units of momentum (being energy/velocity).  Thus we should be substituting

( )u
u

eA
p h

h
   . This is not obvious because we have put 1c h   

We want to form Hamiltonian energy terms viz 
2

2

p

m
(via 21

2
mv , classically).  Multiplying out, we 

have a term 2 u
u

eA
h

h
 which becomes  the spin Hamiltonian we want, viz

2

oehB

m
.  Thus our ignored 

term
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e A

m
  must be small compared with this, or 
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Or 2

o uhB eA . Now (and this is where the Physics comes in), we put u oA xB where x is some 

distance in the system. So we need to show that 
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The question is what is x. It could be the size of the structure which contains the electron – i.e. the 

container (not OK). It could be the classical electron radius ,
2

2

1

2 o e

e

m c
, which is 

153.10 M
(OK) or 

it could be the scale distance in which the wave function decays. 

  



g-2 

Now we move to look at the correction to g – the “g -2” factor that heralded in the world of 

Quantum Field Theory – specifically Quantum Electrodynamics 

This is taken from A.Zee’s “Quantum Field Theory in a nutshell” section III 6. 

In what follows the “Gordon decomposition” is used to break up ( ) ( )u p u p into a standard 

current part and a magnetic moment part. 

The tree level term – discovered by Dirac – has a  term. When more  terms are found in loop 

diagrams (and we are only looking at one loop diagram here – this is appropriate  given that the Fine 

Structure Constant ,which determines the correction, is small  and is raised to powers in more 

complex loops) then they all add (TBC) to both the current and magnetic terms. Thus they have the 

effect of changing the value of the charge – the coupling constant between the Dirac Electron Spinor 

field and the Electromagnetic  field A . Thus the g=2 value is not changed – that value is embedded 

into  ( ) ( )u p u p  and remains as 2. 

Of course experimentalists measure the actual value of ‘e’ which contains all of the loop terms and 

one can’t access the naked value of “e” – ie the value in the electron vertex. 

As ( )p p    + magnetic moment terms, when we find ( )p p  terms in a loop diagram they 

equate to “anomalous magnetic moment” terms plus the (unobservable )   i.e. electron charge 

term. We search for these ( )p p  terms to get the anomalous magnetic moment terms. 

 

The loop term 

Zee start by looking at two Feynman diagrams together 

 

 



 

 

This is the basic interaction terms with vertex ie  and there are no internal propagators – so all 

lines (electron and photon) are real – they are ‘on-mass-shell’.  The additional Feynman diagram 

looks like.   

 

(Zee states that other loop diagrams at this order only contain  terms). The second of these 

Feynman diagrams is more complex. There are three spin ½ vertices of the form 

ie   

a photon propagator  
2

g
i

k


 

and two spin ½ propagators 
2 2

p m
i

p m




 

in and out of the main vertex. 

 

Multiplying up and integrating over the appropriate four-momentum k, we have 

4
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What part of the Integral? 

Now we need to know what part of this integral are we interested in: 

Consider the Dirac electron current ( ) ( )u p u p which equals (via the Gordon decomposition) 

( ) ( )
( ) ( )

2 2

up p p p
u p i u p

m m

   
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The form of the overall current3  needs to be [See Zee III.6. equation 7] and putting q p p   

2 2

1 2, | (0) | , ( ) ( ) ( ) ( )
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[Invoking Lorentz invariance and current conservation] 

And applying Gordon’s decomposition to this we have – for the leading term in momentum transfer 

(i.e. 2 0q  ) 

1 1 2

( )
( , ) (0) ( (0) ( , )
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p p
u p s F i q F F u p s
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1(0)F  is the electric charge – by definition 1: We can’t get access to the naked charge. So we note 

that Dirac’s magnetic moment has shifted by  21 (0)F  

Reforming the Integral 

Returning to the Integral. We are now only interested in terms of the form
( )

2

up p

m

 
. 

Multiplying through by ( )p k m   and ( )p k m  we have for the [] term 
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But – see A&H7p7 - 2p (and therefore 2 2p k ) are actually 2p . So we come to 

4
2

4 2 2 2 2 2
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3
 My assumption here is that this is not a Dirac electron current, but an actual “real-world current” – with only 

these allowable parameters. 



Zee reduces this to 

4
2

4 2(2 )
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
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
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The Denominator calculation 

Feynman has discovered that 

1 1 1

3

0 0 0

1 . .
( 1)

( )

d d d

xyz x y z

  
   

  
   

     

(which is why he was a genius) The second delta symbol here is a Dirac function, and enforces 

1      when the third integral is performed giving 

1 1

3

0 0

.

( ( ) ( ))

d d

z x z y z

 

 


      over the triangle bounded by 0 1   and 0 1   

In this case, putting 2k z , 2 2( )p k m x    and 2 2( )p k m y    

We have  

2 2 2 2 2 2 2(( ) ) (( ) )k p k m k p k m k          

And expanding out 

2 2 2 2 2 2 2 2 2( 2 ) ( 2 )k p k m k p k p k m k pk             

Of course 2p p p

  which is 2 2E p and the rest mass. As p is ‘on-mass-shell’, we then have

2 2p m , so we are left with 

2 2 2k p k pk    

Changing variable by putting ( )k L p p    we get 

2 2 2 2 2( ) 2 ( ) 2 ( ) 2( )L p p L p p L p p p p                   

 and the middle two terms cancel to 
2 2( )L p p    

Expanding this out and noting that the photon q, the photon four momentum is the difference 

between the incoming and outgoing electron momenta  (i.e. q p p  ), we have 



2 2( ( ) )L p q p     

Now some more multiplying out 

2 2 2 2 2( ) 2 ( )L p q p p q p        

And further to 

2 2 2 2 2 2( ( ) 2 2 )L p q p p pq         

But  again 2 2p m  

2 2 2 2 2 2( ( ) 2 2 )L p q p p pq         

 2 2 2( ) 2L m q pq pq          

What is in the square bracket is of order 2( )q , and we will in future ignore 

 

 

The Numerator calculation 

Moving to the numerator N   , we move to replace k with L, so 

L P m L P m 

             

where (1 )P p p        and (1 )P p p        

Now we multiply out in powers of the mass, m 

m L P 

      + 

L P m 

     + 

m m 

   + 

L P L P 

           

Now we look at these in turn: 

m L 

    & L m 

   terms are zero by symmetry over the integral 

As 

  is 4, m m 

    is just a 
 term – which we ignore. Finally the 

L P 

   and the P P 

   terms are also single L terms and integrate  



to zero: negative side of the integral cancels positive. 

So we are left with 

m P 

    + P m 

    

which reduces to  

( )m P P  

          

plus L P L P 

           

Here again we remove terms linear in L which integrate to zero. So we are left with 

P P 

     and L L 

   , giving a total of 4 terms: 

( )m P P  

          plus P P 

     and L L 

    

The mass terms “m”, can be reformulated thus – recalling that  4

      

and also that 4ab ab

   . So they become 

4 ((1 ) (1 ) )m p p p p              

4 ((1 2 ) (1 2 ) )m p p       

As this equation is symmetric with respect to   this becomes 

4 (1 )( )m p p        

We now turn to the quadratic terms. Firstly L L 

   . Note that 2abc cba

    .  

So we have L L L L   

      

These  two L terms, L L  , can be written as  
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4
g L  and under the Integral 

4
2

4(2 )

d L
L

 is just a number.  So we are left with a   term which is 

removed. 

P P 

    which is just 2 P P  . (Note change of order as 2abc cba

    ) 

Which further reduces 2[(1 ) ] [(1 ) ]p p p p           

Looking at the ( ) ( )u p pu p term we get m  as – from Dirac – 

 ( ) ( ) 0p m u p  and  ( )( ) 0u p p m    so we reduced to 



2[(1 ) ] [(1 ) ]p m p m          

Again the 2m term gives a +   term which we can ignore and we have for the ‘m’ term 

2[(1 ) ] [ 2 ] 2[ ] [(1 ) ]p m m p              

Now we note that 2p g p p    

          (noting that the RHS term p  has no Feynman 

slash). Expanding this, we have 2p p     

But, again ( ) ( )u p p u p m    via the Dirac equation again. So we have a   term which we can 

ignore.  

The p   term converts to p 

   

2g p p  

     

2p p   .  

Pulling out ( ) ( ) 0p m u p  yet again, we have yet another   term, which is thrown away.  

Collecting up terms, we have  

2 [(1 )2 (1 )2 ]m p p        

Finally for the 0m term we have  

2(1 ) (1 )p p       

1
2[(1 )(1 ) ][ ]

2
p p p p           (here we have divided and multiplied by 2) 

We need Dirac again to generate an ‘m’ term. Recalling ( ) ( ) 0p m u p  , ( )( ) 0u p p m    and 

4p p  

     

4up p 

    

1
2[(1 )(1 ) ][ 4 4 ]

2

up p p p        

And now Dirac gives us the “m” for the p  

2[(1 )(1 )]2 ( )m p p        

Collecting all of these numerator terms terms: 



4 [1 ]( )m p p       

2 [ (1 ) (1 )]( )m p p          

2 [ 2(1 )(1 )]2 ( )m m p p        

Taking a factor of 2 ( )m p p   we have 

2 2[2 2 2 2 2 2 ]                or 

2 2[ 2 ]         which can be factored as 

( )(1 )       

 

 

The main Integral 

Now after all of this algebra, we return to the main integral 

4
2

4 2 2 2
2 ( ) ( )(1 )

(2 ) [ ( ) ]

dL d d
ie m p p

L m

 
   

  
     

    

Now the 4dL  integral gives (rescaling by 2( )  ) 

4

4 2 2 2 2

1

(2 ) [ ] 32

dL i

L m i m  




   

Putting this back in we get 

2

2 2 2

. 2 ( ) ( )(1 )

32 ( )

d d i m p p
ie

m

     

  

    
 

  

2

2 2

( ) ( )(1 )

2 32 ( )

p p d d
e

m

      

  

   
 

  

Recalling that this Integral is over the triangle bounded by 0 1   and 0 1   

It come to 
1

2
 and we are left with 

2

2 2

( ) ( ) ( )
(0)

2 8 2 2 2

p p e p p p p
F

m m m

  

 

     
   .  



So   
2 (0)

2
F




 , with  being the Fine Structure constant, is the correcting factor to g. So g is not 

two but 2(1 )
2




 …. As measurements indicated. 

 

 

 

 

 

 

 

 

 

 


